DESCRIPTION :
The postdoctoral project will be carried out in the project-team MICROCOSME at Inria Grenoble - Rhône-Alpes under the joint supervision of Aline Marguet, Eugenio Cinquemani and Hidde de Jong within the framework of the ARBOREAL ANR project.
MICROCOSME is an interdisciplinary team that includes applied mathematicians, engineers, computer scientists, biologists as well as experimentalists from the biology/physics team BIOP of the Université Grenoble-Alpes.
Mission confiée
Gaining an understanding of the cellular processes underlying bacterial growth is crucial for fundamental research in biology as well as for applications in biotechnology, health, and environmental technology. New experimental technologies have been developed
to monitor growth and gene expression at the single-cell level, opening the path to the exploration of the origins of variability in growth phenotypes within a population of bacterial cells. So far, the data obtained from these technological breakthroughs have been exploited only in part. In particular, appropriate mathematical models and methods to relate single-cell gene expression data with the emergence of growth variabilityin a population are rare [1].
The ARBOREAL ANR project aims at developing a new mathematical framework for the analysis of growth variability from single-cell data, by combining structured branching processes [2, 3] with models of bacterial growth [4] at the single-cell level. We will obtain a
new class of stochastic individual-based models, called Branching Resource allocation Processes (BRP), that will enable investigation of the variability of growth phenotypes in a proliferating microbial population in terms of the variability of physiological and cell division processes. The development of the BRP framework will entail modelling, analysis, and inference, and will exploit microfluidics experiments comprising single-cell measurements of growth and expression levels of ribosomes and enzymes in the model organism Escherichia coli [5].
The proposed postdoc position involves the numerical simulation, analysis and inference of branching resource allocation processes and the application of this new framework to existing single-cell datasets in the team to study the onset of growth variability in bacterial
populations.
Principales activités
Using a variety of mathematical tools and algorithmic approaches (Continuous-Time Markov chains, Mixed-Effects modelling, Branching processes, stochastic simulation) as well as single-cell gene expression datasets, we will address several of the following points:
* Analyse the new BRP models (asymptotic behavior, comparison of population and lineage dynamics, compute the large population limit and compare with existing population-average resource allocation models).
* Develop numerical simulation tools for the BRP models.
* Develop analytical (least-squares, moment fitting, etc.) methods and/or sampling-based (MCMC) algorithms for the identification of unknown BRP model parameters from time-course, single-cell (growth and gene expression) measurements over cell lineages.
* Develop methods for estimation of unobserved intracellular processes from the data. Implement methods in Python or Julia.
* Use the BRP framework to analyse single-cell E. coli datasets from our laboratory [5] and other datasets to relate growth phenotypes on the population level to resource allocation strategies on the single-cell level.
Bibliography.
[1] Thomas, P., G. Terradot, V. Danos, and A. Y. Wei e, Sources, propagation and consequences of stochasticity in cellular growth. Nat Commun 9:4528, 2018.
[2] A. Marguet, Uniform sampling in a structured branching population,Bernoulli, 25, pp. 2649-2695, 2019.
[3] S. Méléard and V. Bansaye, Stochastic Models for Structured Populations: Scaling Limits and Long Time Behavior, Springer Cham, 2015.
[4] N. Giordano, F. Mairet, J.-L. Gouzé, J. Geiselmann, and H. de Jong, Dynamical allocation of cellular resources as an optimal control problem: Novel insights into microbial growth strategies, PLoS Comput Biol, 12, p. e1004802, 2016.
[5] A. Pavlou, E. Cinquemani, C. Pinel, N. Giordano, M. Van Melle-Gateau, I. Mihalcescu, J. Geiselmann and H. de Jong. Single-cell data reveal heterogeneity of investment in ribosomes across a bacterial population. Nat Commun 16, 285 (2025).
Code d'emploi : Chargé de Recherches (h/f)
Domaine professionnel actuel : Scientifiques
Temps partiel / Temps plein : Plein temps
Type de contrat : Contrat à durée indéterminée (CDI)
Compétences : Simulation Informatique, Systèmes Dynamiques, Python (Langage de Programmation), Traitement des Données, Markov, Algorithmes, Science Fondamentale, Biotechnologies, Biologie, Technologie de l'Environnement, Enzymes, Expérimentation, Expression des Gènes, Stratégies de Croissance, Mathématiques, Modélisation Mathématique, Biologie Moléculaire et Cellulaire, Microfluidique, Sciences Physiques, Recherche Post-Doctorale, Processus Stochastique, Allocation des Ressources, Simulations, Compétences de Modélisation, Programmation Scientifique
Courriel :
aline.marguet@inria.fr
Téléphone :
0139635511
Type d'annonceur : Employeur direct